Search results for "Hybrid reactor"
showing 8 items of 8 documents
Hybrid activated sludge/biofilm process for the treatment of municipal wastewater in a cold climate region: a case study.
2011
A hybrid activated sludge/biofilm process was investigated for wastewater treatment in a cold climate region. This process, which contains both suspended biomass and biofilm, usually referred as IFAS process, is created by introducing plastic elements as biofilm carrier media into a conventional activated sludge reactor. In the present study, a hybrid process, composed of an activated sludge and a moving bed biofilm reactor was used. The aim of this paper has been to investigate the performances of a hybrid process, and in particular to gain insight the nitrification process, when operated at relatively low MLSS SRT and low temperatures. The results of a pilot-scale study carried out at the…
Quantification of kinetic parameters for heterotrophic bacteria via respirometry in a hybrid reactor
2010
Over the last decade new technologies are emerging even more for wastewater treatment. Among the new technologies, a recent possible solution regards Moving Bed Biofilm Reactors (MBBRs) that represent an effective alternative to conventional processes. More specifically such systems consist in the introduction of plastic elements inside the aerobic reactor as carrier material for the growth of attached biomass. Recently, one of the mostly used alternatives is to couple the Moving Bed Biofilm Reactor (MBBR) process with the conventional activated sludge process, and the resulting process is usually called HMBBR (Hybrid MBBR). In the MBBR process the biofilm grows attached on small plastic el…
Anaerobic thermophilic (55°C) treatment of TMP whitewater in reactors based on biomass attachment and entrapment
1999
Abstract Thermomechanical pulping (TMP) whitewater was treated in thermophilic (55°C) anaerobic laboratory-scale reactors using three different reactor configurations. In all reactors up to 70 % COD removals were achieved. The anaerobic hybrid reactor, composed of an upflow anaerobic sludge blanket (UASB) and a filter, gave degradation rates up to 10 kg COD/m 3 d at loading rates of 15 kg COD/m 3 d and hydraulic retention time (HRT) of 3.1 hours. The anaerobic multi-stage reactor, consisting of three compartments, each packed with granular sludge and carrier elements, gave degradation rates up to 9 kg COD/m 3 d at loading rates of 15–16 kg COD/m 3 d, and HRT down to 2.6 hours. Clogging and …
MUNICIPAL WASTEWATER TREATMENT IN A HYBRID ACTIVATED SLUDGE BIOFILM REACTOR: A PILOT PLANT EXPERIENCE
2008
A hybrid activated sludge/biofilm process (IFAS) was investigated. This process which contains both suspended and attached biomass, is created by introducing plastic elements as biofilm carriers material into a classical activated sludge system. This process is suitable for upgrading existing activated sludge wastewater treatment plants which are no longer able to comply with the effluent standards, and in particular in those cases where the existing plant does not nitrify or only nitrify during summer. However, the IFAS processes are relatively new and there are still uncertainties with respect to their design. A main task is to find a rational approach to the design of nitrification in hy…
Performance of a hybrid activated sludge/biofilm process for wastewater treatment in a cold climate region: Influence of operating conditions
2013
a b s t r a c t The main aim of the study was to investigate a hybrid MBBR process, mostly in terms of organic matter removal and nitrification, when operating with different values of the mixed liquor sludge retention time (SRT), and highlighting the influence of temperature on the process. Based on experience in practice it was hypothesized that nitrification could be maintained at far lower SRT's than in conventional activated sludge systems and with high organic loading rates applied. A field gathering campaign has been carried out on a hybrid activated sludge/biofilm. The obtained results highlighted that the pilot plant was capable to remove the organic matter at loading rates up to 3…
Influence of operative conditions in a hybrid activated sludge/biofilm process for the treatment of municipal wastewater in a cold climate region: a …
2012
In the last years the idea to combine suspended and attached bomass by introducing suspended carriers into the aeration tank for biofilm attachment and growth was proposed. The increase of the overall sludge age in the system leads to a favourable environment for the growth of nitrifying bacteria, so that nitrification may be maintained throughout the winter. The main aim of the study was to investigate a hybrid MBBR process, mostly in terms of nitrification, when operating with different values of the sludge retention time (SRT), and highlighting the influence of temperature on the process. Based on experience in practice it was hypothesized that nitrification could be maintained at far lo…
Anaerobic degradation of glycol ether-ethanol mixtures using EGSB and hybrid reactors: Performance comparison and ether cleavage pathway.
2017
Abstract The anaerobic biodegradation of ethanol-glycol ether mixtures as 1-ethoxy-2-propanol (E2P) and 1-methoxy-2-propanol (M2P), widely used in printing facilities, was investigated by means of two laboratory-scale anaerobic bioreactors at 25oC: an expanded granular sludge bed (EGSB) reactor and an anaerobic hybrid reactor (AHR), which incorporated a packed bed to improve biomass retention. Despite AHR showed almost half of solid leakages compared to EGSB, both reactors obtained practically the same performance for the operating conditions studied with global removal efficiencies (REs) higher than 92% for organic loading rates (OLRs) as high as 54 kg of chemical oxygen demand (COD) m−3 d…
Isovaleraldehyde degradation using UV photocatalytic and dielectric barrier discharge reactors, and their combinations
2015
International audience; The abatement of isovaleraldehyde present in air was carried out in UV photocatalytic and dielectric barrier discharge reactors (and their combinations) for concentrations up to 150 mg C m−3 and air flow rates ranging from 4 to 10 m3 h−1. A kinetic study was performed following a Langmuir–Hinshelwood model. Photocatalytic treatment of an isovaleraldehyde and isovaleric acid mixture showed a clear inhibition of isovaleric acid abatement in presence of isovaleraldehyde. Dielectric barrier discharge treatment of isovaleraldehyde showed an increase of removal efficiency with applied voltage and a decrease with air flow rate and inlet concentration. Moreover, introduction…